Skip to content

WA5. Derivatives of Inverse Functions, Exponential and Logarithmic Functions

Introduction

The logarithmic differentiation is defined as follows:

\[ \begin{aligned} f(x) &= g(x)^{h(x)} \\ \ln(f(x)) &= \ln(g(x)^{h(x)}) \text{ ---(1)}\\ \ln(f(x)) &= h(x) \ln(g(x)) \text{ ---(2)} \\ \frac{f'(x)}{f(x)} &= h'(x) \ln(g(x)) + \frac{h(x) g'(x)}{g(x)} \text{ ---(3)}\\ f'(x) &= f(x) \left( h'(x) \ln(g(x)) + \frac{h(x) g'(x)}{g(x)} \right) \text{ ---(4)} \\ \end{aligned} \]

Question 1

1. Find the derivative for the function \(f(x)=2e^x-8^x\).

\[ \begin{aligned} f(x) &= 2e^x-8^x \\ \ln(f(x)) &= \ln(2e^x-8^x) \\ \ln(f(x)) &= \ln(2e^x) - \ln(8^x) \\ \ln(f(x)) &= \ln(2) + \ln(e^x) - \ln(8^x) \\ \ln(f(x)) &= \ln(2) + x \ln(e) - x \ln(8) \\ \ln(f(x)) &= \ln(2) + x - x \ln(8) \\ \frac{f'(x)}{f(x)} &= 0 + 1 - \ln(8) \\ f'(x) &= f(x) \left( 1 - \ln(8) \right) \\ f'(x) &= (2e^x-8^x) \left( 1 - \ln(8) \right) \\ \end{aligned} \]

Question 2

2. Find the derivative for the function \(f(z)=z^5-e^z lnz\).

\[ \begin{aligned} f(z) &= z^5-e^z lnz \\ \ln(f(z)) &= \ln(z^5-e^z lnz) \\ \ln(f(z)) &= \ln(z^5) - \ln(e^z lnz) \\ \ln(f(z)) &= 5 \ln(z) - \ln(e^z) - \ln(lnz) \\ \ln(f(z)) &= 5 \ln(z) - z - \ln(lnz) \\ \frac{f'(z)}{f(z)} &= \frac{5}{z} - 1 - \frac{1}{lnz} \cdot \frac{1}{z} \\ f'(z) &= f(z) \left( \frac{5}{z} - 1 - \frac{1}{lnz} \cdot \frac{1}{z} \right) \\ f'(z) &= \left( z^5-e^z lnz \right) \left( \frac{5}{z} - 1 - \frac{1}{lnz} \cdot \frac{1}{z} \right) \\ \end{aligned} \]

Question 3

3. Find the tangent line to \(f(x)=7^x+4e^x at x=0\).

\[ \begin{aligned} f(x) &= 7^x+4e^x \\ f'(x) &= 7^x \ln(7) + 4e^x \\ f'(0) &= 7^0 \ln(7) + 4e^0 \\ f'(0) &= 1 \ln(7) + 4 \\ f'(0) &= \ln(7) + 4 \\ f(0) &= 7^0 + 4e^0 \\ f(0) &= 1 + 4 \\ f(0) &= 5 \\ \end{aligned} \]
\[ \begin{aligned} y &= f'(0) (x-0) + f(0) \\ y &= (\ln(7) + 4) x + 5 \\ y &= x \ln(7) + 4x + 5 \\ \end{aligned} \]

Question 4

4. Determine if \(G(z)=(z-6)ln z\) is increasing or decreasing at the following points (a) z=1 (b) z=5 © z=20.

\[ \begin{aligned} G(z) &= (z-6)ln z \\ G'(z) &= (z-6) \frac{1}{z} + ln z \\ G'(1) &= (1-6) \frac{1}{1} + ln 1 \\ G'(1) &= -5 + 0 \\ G'(1) &= -5 \\ G'(5) &= (5-6) \frac{1}{5} + ln 5 \\ G'(5) &= -1 \frac{1}{5} + ln 5 \\ G'(5) &= -\frac{1}{5} + ln 5 \\ G'(5) &= -0.2 + 1.609 \\ G'(5) &= 1.409 \\ G'(20) &= (20-6) \frac{1}{20} + ln 20 \\ G'(20) &= 14 \frac{1}{20} + ln 20 \\ G'(20) &= 0.7 + 2.995 \\ G'(20) &= 3.695 \\ \end{aligned} \]

Question 5

5. Find the derivative for the function \(f(x)=(x+1)^x\).

\[ \begin{aligned} f(x) &= (x+1)^x \\ \ln(f(x)) &= \ln((x+1)^x) \\ \ln(f(x)) &= x \ln(x+1) \\ \frac{f'(x)}{f(x)} &= \ln(x+1) + \frac{x}{x+1} \\ f'(x) &= f(x) \left( \ln(x+1) + \frac{x}{x+1} \right) \\ f'(x) &= (x+1)^x \left( \ln(x+1) + \frac{x}{x+1} \right) \\ \end{aligned} \]

Question 6

6. Find the derivative for the function \(f(x)=(x)^{x+1}\).

\[ \begin{aligned} f(x) &= (x)^{x+1} \\ \ln(f(x)) &= \ln((x)^{x+1}) \\ \ln(f(x)) &= (x+1) \ln(x) \\ \frac{f'(x)}{f(x)} &= \ln(x) + \frac{x+1}{x} \\ f'(x) &= f(x) \left( \ln(x) + \frac{x+1}{x} \right) \\ f'(x) &= (x)^{x+1} \left( \ln(x) + \frac{x+1}{x} \right) \\ \end{aligned} \]

Question 7

7. Find the derivative for the function \(f(x)=(\sqrt{x})^x\).

\[ \begin{aligned} f(x) &= (\sqrt{x})^x \\ \ln(f(x)) &= \ln((\sqrt{x})^x) \\ \ln(f(x)) &= x \ln(\sqrt{x}) \\ \ln(f(x)) &= x \frac{1}{2} \ln(x) \\ \frac{f'(x)}{f(x)} &= \frac{1}{2} \ln(x) + \frac{x}{2x} \\ f'(x) &= f(x) \left( \frac{1}{2} \ln(x) + \frac{x}{2x} \right) \\ f'(x) &= (\sqrt{x})^x \left( \frac{1}{2} \ln(x) + \frac{x}{2x} \right) \\ f'(x) &= (\sqrt{x})^x \left( \frac{1}{2} \ln(x) + \frac{1}{2} \right) \\ \end{aligned} \]

Question 8

8. Find \(\frac{dy}{dx}\) for \(\sqrt{3x^2+1} (3x^4+1)^3\).

\[ \begin{aligned} f(x) &= \sqrt{3x^2+1} (3x^4+1)^3 \\ \ln(f(x)) &= \ln(\sqrt{3x^2+1} (3x^4+1)^3) \\ \ln(f(x)) &= \ln(\sqrt{3x^2+1}) + \ln((3x^4+1)^3) \\ \ln(f(x)) &= \frac{1}{2} \ln(3x^2+1) + 3 \ln((3x^4+1)) \\ \frac{f'(x)}{f(x)} &= \frac{1}{2} \frac{6x}{3x^2+1} + 3 \frac{12x^3}{3x^4+1} \\ f'(x) &= f(x) \left( \frac{1}{2} \frac{6x}{3x^2+1} + 3 \frac{12x^3}{3x^4+1} \right) \\ f'(x) &= \sqrt{3x^2+1} (3x^4+1)^3 \left( \frac{1}{2} \frac{6x}{3x^2+1} + 3 \frac{12x^3}{3x^4+1} \right) \\ \end{aligned} \]

Question 9

9. Find \(\frac{dy}{dx}\) for \(y=3x^{3x}\).

\[ \begin{aligned} f(x) &= 3x^{3x} \\ \ln(f(x)) &= \ln(3x^{3x}) \\ \ln(f(x)) &= \ln(3) + \ln(x^{3x}) \\ \ln(f(x)) &= \ln(3) + 3x \ln(x) \\ \frac{f'(x)}{f(x)} &= 0 + 3 \ln(x) + 3x \frac{1}{x} \\ f'(x) &= f(x) \left( 3 \ln(x) + 3x \frac{1}{x} \right) \\ f'(x) &= 3x^{3x} \left( 3 \ln(x) + 3x \frac{1}{x} \right) \\ f'(x) &= 3x^{3x} \left( 3 \ln(x) + 3 \right) \\ \end{aligned} \]